1,945 research outputs found

    Reconfiguration based built-in self-test for analogue front-end circuits

    Get PDF
    Previous work has shown that it is feasible to implement a fully digital test evaluation function to realise partial self-test on an automatic gain control circuit (AGC). This paper extends the technique to INL, DNL, offset & gain error testing of analogue to digital converters (ADC's). It also shows how the same function can be used to test an AGC / ADC pair. An extension to full self-test is also proposed by the on-chip generation of input stimuli through reconfiguration of existing functions

    3D Model Atmospheres for Extremely Low-Mass White Dwarfs

    Get PDF
    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg = 5-6.5 (cgs units) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., logg = 5-9). For low-mass WDs, the correction in temperature is relatively small (a few per cent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.Comment: 11 pages, 8 figures, accepted for publication in the Astrophysical Journa

    When flux standards go wild: white dwarfs in the age of Kepler

    Get PDF
    White dwarf stars have been used as flux standards for decades, thanks to their staid simplicity. We have empirically tested their photometric stability by analyzing the light curves of 398 high-probability candidates and spectroscopically confirmed white dwarfs observed during the original Kepler mission and later with K2 Campaigns 0-8. We find that the vast majority (>97 per cent) of non-pulsating and apparently isolated white dwarfs are stable to better than 1 per cent in the Kepler bandpass on 1-hr to 10-d timescales, confirming that these stellar remnants are useful flux standards. From the cases that do exhibit significant variability, we caution that binarity, magnetism, and pulsations are three important attributes to rule out when establishing white dwarfs as flux standards, especially those hotter than 30,000 K.Comment: Accepted for publication in MNRAS; 7 pages, 4 figures, 2 table
    • …
    corecore